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This investigation deals with three-dimensional mired flows of an ideal 
gas in Lava1 nozzles. The study is concerned particularly with the form 
of the surface of transition in the case when the velocity at the center 
of the flow approaches the velocity of sound, while the derivative of 
the velocity in the direction of the canal axis at that point vanishes. 
A theorem is derived which is a generalization for three-dimensional 
motion of a well-known theorem of Prank1 and G&tler, v&lid in the cases 
of plane-parallel and arisymmetrical gas streams El.2 1. On the basis of 
this theorem two possible types of flows in the neighborhood of the 
throat of a nozzle, and the possibility of transition of one type into 
the other are discussed. 

1. The equations describing three-dimensional irrotational isentropic 
flows of an ideal gas in a cartesian coordinate system have the form 

2a2 = (x + 1) - (x - 1) q2 

where (I is the velocity of sound, K 

adiabatic, @ is the potential. u, Y 
the velocity q along the X-, y- and 

units is chosen in such a manner as 
velocity 0 = 1. 

Using Equations (1.2) and (1.31, 
form 

(1.3) 

is the exponent of the Poisson 
and w are the vector components of 
z-axes respeotively. The system of 
to make the magnitude of criti.cal 

we will write Equation (1.1) in the 
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It is known that in the region of the throat of the LaVal BOZZle either 
of two types of mixed flows may exist. In the first, in the subsonic 
velocity field, there are local supersonic zone& adjacent to the walls 
of a canal (Taylor’ s flows) : in the second, the velocity varies from sub- 
sonic to supersonic as it passes through the throat of the nozzle 
(Meyer’s flow). Plane and axisymmetrical gas flows of both types were the 
subjects of investigation of several pauers [l-l0 f; analogous three- 
dimensional problems were investigated by the author c 11.12 1. 

fn the present paper we are investigating the conditions under which 
the supersonic nones which are adjacent to the walls of the nozzle are 
joined on the axis of the channel and how the transition from mixed 
three-dimensional gas motion of the Taylor type to the Meyer flow takes 
place. For this we shall investigate a stream which will be assumed to 
have two mutually perpendicular planes of symmetry in the region of the 
sonic surface. The straight line along which these planes intersect co- 
incides with the axis of the channel and we shall also let it be co- 
incident with the x-axis. We will assume in what follows that the direc- 
tion of the velocity vector of the main flow of a gas is along this axis, 
also at the origin of the coordinate system its magnitude approaches the 
velocity of sound. Thus, the goint x = y t E = 0 is the point of inter- 
section of the channel axis with the surface of transition, i.e. it is 
the center of the flow f6 1. 

In [8.9,12 1 solutions were obtained describing a limiting case of 
the Taylor flow in which local supersonic zones join on the axis of the 
nozzle in such a war that the sonic surface is orthogonal to this axis. 
The corresponding flow pattern is not unique in the three-dimensional 
motions of gas. We shall invest igate, therefore, the possibility of an- 
other type of limiting Taylor flow where the transition surface from 
subsonic to supersonic velocities is tangent to the r-axis at the center 
of the nozzle. In this case it is necessary that 

au/az=o when x=y=z=O (1.5) 

We shall consider the consequences derived from the condition (1.5). 
Assuming the stream to be analytical, we shall expand, in accordance with 
the representation above, the expression for the velocity potential @ in 
the form of a power series 

where the coefficients a,,eu, alee and azoO are given by the relationships 
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a000 = 0, aloo =: 1, a?00 -= 0 (1.7) 

Substituting the series (1.6) into the equation of motion (1.4) and 
equating in the expression thus obtained the terms with the same powers 
xr y and Z, it is possible to establish relationships which connect the 
coefficients a1,2n,2n. 

The equation obtained through correlation of the coefficients of 
xhy%2V h as the form 

k~t[2(kf~Z-l)f(2t-l)(X-~)]-i 
(i$-z-j-r=?& j+rnl_S==&, k+n+lzv+*) 

-I- x2%, aj, zk ai, 2m, an a,, ss, at (2imr fi + f f (r - 1) (x - I)1 -f- 
f il.9 f2 (j + m) + (2s - 1) (x - i)]} + 

(i-i-t-i-r-X4-2, j-l-m-i-s-p-i-2. f;+n+f=v) 

+ xzdi, 2j,2kal,*m,2nBr,*s,*t {zknr Ii f ' $_ fr-i) (x-f)] + 

-t iit [a (k + n) f (21 - I) (X - I)]} I_ 
(i f 2 f r = A + 2. j’$ m + s = p, k t_ 71$- t = Y + 1) 

i ~8ai,~j,fka~,2~,2nar,2s,~t{kns[2fi+'n)+(Zs--1)(r.--1)~t 

+ intt f2 (k -k n) 4 (2t - 1) (x - I)], 
(ii-i+?.= A. j+m+s==II.-f+r. !i+n_tt =+J+:11 

2. Equation (1.6) which correlstes the coefficients a1,2m,2n of the 
solution (1.6) is the unique description of the gas flow in the region 
of its center (the shape of the nozzle is not given a priori). Before we 

begin their detailed study. we shall investigate certain basic qualita- 
tive peculiarities of three-diwens~onal motions. For this we shall limit 
the number of terms in the expansion (1.6) to the fourth order inclusive. 
From the first five terms of Equation (1.6) we have 

wza -+ Qooz = 0, Ql20 + a102 = 0, a220 Jr a-202 -I- 0 

6Qoao _i- a022 = ha020 (also -I- 4~0) I 6aoo4 f (1024 = 4~003 (%oa f aoo2 2 ) 

(2.1) 

(24 

In a sufficiently small region of the plane x = 0, containing the 
origin of the coordinates, coefficients “fo2,, and aO02 characterize tha 
magnitudes of the cross-sectional components of the stream velocity. In 
the same region the coefficients a12@, a102, a22O and 02e2 give the 
values of the first and the second derivatives of the comPonents tl and m 
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along the r-axis, and determine the direction of the gas velocity near 

the plane x = 0. 

From Equations (2.1) there follows that the quantities ao2,, and aoo2, 
alzO and aIo2, and aZ2e and a2e2 are of opposite sign; 

Thus, in the plane x = 0 and near it, one of the cross-sectional com- 
ponents of the particle velocity is directed to the center of the flow, 
the other away from it, i.e. in one of the two planes of symmetry of gas 
motion the stream converges, in the other, it diverges. This picture is 
a distinguishing feature of three-dimensional flows, as in the plane and 
axisymmetrical motions a similar structure of the velocity field is im- 
possible also because of the condition (1.5), as it is shown in 12 1 
that all the coefficients ar 2r 2n(r = 0, 1. 2; r,n = 0. 1, 2, . . . ), 
except aIoO = 1, become zero: Mbreover, in this latter case the sonic 
surface becomes plane, namely, perpendicular to the axis of the channel, 
and within that surface any cross-sectional component of the stream velo- 
city vanishes. In the general case of three-dimensional flows, solely as 
a consequence of condition (1.5). an infinite system of equations (1.8) 
is established, the first of which are Equations (2.1) and (2.2). 

If we require, however, that in the first quadrant of the plane x = 0 
the quantities v and w, dv/dx, &/a~, d2v/6’x2 and a2w/aZ2 are to have the 
same signs, excluding a reversal of sign, i.e. that in this region of the 
plane in all directions either convergence or divergence takes place, 
then from Equations (2.1) and (2.2) we obtain immediately 

(2.3j 

If one develops the expansion (1.6) for the potential @ to the next 
higher terms (up to sixth order included), it may be shown that in this 
case also 

Thus, in the approximation considered in this paragraph the sonic sur- 
face is. as in the case of plane and axisymmetrical flows, a plane per- 
pendicular to the axis of the channel. Both cross-sectional components 
of the gas-particle velocity vanish in this plane and, moreover, 
Ju/t3x = 0. Note that the assumptions about the signs of functions v and 
V, au/a, and am/a,, d2v/dz2 and a2v/dz2 made above do not constitute a 
significant limitation, since in real nozzles convergence of the stream 
takes place in all directions up to the critical cross-section and after 
this, divergence. 

3. We shall prove now the theorem pertaining to three-dimensional 
supersonic flows which serves as a strict proof of the results obtained 
in the preceding paragraph. 
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Thcorca. Let a flow of an ideal gas be given, which has two mutually 
Perpendicular planes of symmetry y = 0 and z = 0 and which is analytical 
at the point x = y = z = 0 and in some region K about this point. 
Further, let the stream velocity u(x, 0, 0) along the r-axis approach 
the local velocity of sound at the point x = 0, also let the derivative 
of the velocity there vanish: 

u=l, auiax=o for x=~=z=O (3.1) 

Finally, let the quantities v and I, &S/C?% and dw/& ~2v/ax2 and 
c?~w/~L’ have the same signs in the first quadrant of the Plane x = 0 
without reversal of sign. 

For all y and I in K we then have 

u(O, y. z)=i, au(0, y, z)/dz=O, 2, (0, y, 2) = w (0, 1J, 2) = 0 (3.2) 

From the assumptions of the theorem, Equations (1.7) are derived. To- 
gether with (2.3). we have 

fzcJ&J = a020 = am2 = 0, QlOO = 1, (1120 = C7103 = 0; npoo = QZZ@ = “?a2 -- 0 (3.3) 

Equations (3.2) lead to the system 

0 -a --a O.zm.2n - 1.2m, 2n -- 2.27%2n 
=: 0 ( m,u = 0, 1, 2, 1) * .) (3.4) 

for all X, y, z within R, with the exception of alOo = 1. The proof of 
the relationships (3.4) will be carried out by the method of exact 
mathematical induction. For this purpose we shall mahe the following 
assumptions: 

ais,2m,2n = al.2m,2n=a2,2m,2n - -0 for m -j- n f 0 - 1 (3.5) 

(with the exception of 01uu = 11, and we shall show that Formulas (3.5) 
are valid also for a + n = (r. 

In Equation (1.8) we shall assume x = r (r = 0, 1, 2). p + v = D - 1; 
using system (3.5). we obtain 

(3.0) 

f2r -I- 2) (2P + 1) %&(&f1).2” $ (2v + 2) (Zv + 1) aT,2P,2(v+l)= 0 (p + v = 0 - 1, ‘T = 0, 1*2) 

We shall write the expression which contains terms of the order of 
2 u’- 1, and which are included in the expansions of functions ~(0. y, $1, 

*(O, yr 2). auto, y, z)/ax, &CO, y, z)/dx, a’v(O, yr I)/&~ and d2e(0. 

yr t1/dx2. in the form of power series (3.7) 

1 aTcz&--l 
a-4 ax+ - - = @%,2s&oY 2a--I + (d - If “r,2fa_-lf,2Y2=-3 29 . . . $-- ~r,2,2(a--lf ?F2+-f) 

1 ~=~20-_1 
--zL==:ao! 

2(79 azT 
T,O,lO z2”-’ + (a - 1) aT,2,2(a_-D22d-3 yz -I- . . . -I- ~r,2~n--1~.2&+“11) 
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In accordance with the requirement (3.51, Formulas (3.7) give the 
first terms of the expansions of the corresponding functions. Because in 

the first quadrant of the plane x = 0 the components of the stream velo- 

city v and e and their first two derivatives with respect to x must, 
according to the assumption, have the same signs without reversal, the 

constants 

42 7.2a.0 %,2fa-1)’ %0.2a %(a--11.2 fT =- 0, 1,2) 

also must be of the same signs. But this condition contradicts the re- 

lationships (3.6). Hence, it follows that it is necessary that 

a 7,2lLzv =o ( IJ c v < o, T = 0,1,2) 

except alOO = 1. Since for u = 1 and u = 2 Equations (3.5) are identical 
with Equations (3.31, the theorem is fulls Proven. Note that in the case 
of plane flows and of flows rith axial symmetry the conditions imposed 

on the signs of functions ~(0, y, x1 and ~(0, y, z) and on their first 
derivatives with respect to r are fulfilled automatic8llY. Thus, the 

theorem proven in this paragraph is 8 generalization for three-dimension- 

al gas flows of the results of Frank1 and G’drtler [ 1,2 I. 

4. As has been shown, the condition (3.11 in the general case of 

three-dimensional flows of 8 gas does not lead to the case thst the sur- 

face of transition passing through the center of the flow becomes plane. 

Only if additional requirements are imposed. i.e. if 8 Stream is sub- 
jected to either convergence or divergence from all sides in the region 

of the plane x = 0, 8re Formulas (3.2) the consequence of condition (3.1). 

In this case the velocity is equal to the sound velocity throughout the 

plane x = 0 while the cross-sectional velocity components vanish. Yore- 

over, for z = 0 the derivatives &/ax, &/6’z, a2v/~x2 and d2F/dx2 also 

become zero. But since the walls of the channel are formed by the stream 
lines, analytical mixed flows with a plane transition surface from sub- 

sonic to supersonic velocities are possible only in special nozzles with 

sufficiently gradual variation of the form of the walls in the region of 

the critical cross-section. Therefore, for the merging of the local 
supersonic zones at the nozzle axis, which are adjacent to its walls, 

the derivative au/&, generally spe8king, is not equal to zero in the 

center of the flow, except when the stream is subjected to convergence 

in all directions UP to the critical cross-section and thereafter to di- 

vergence. Corresponding solutions of the equations of gas motion have 
been studied earlier, where it was shown that in this case the region of 

suPersonic velocities is bounded by the two surfaces which are OrthogonaI 

to the nozzle axis at the point of intersection with it and mutually 

tangent 8t this Point [ 12 I. 

In conclusion we shsll note that OulY anslstical flows have been eon- 
sidered here. The derived relations are not valid for flows with dis- 
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Gontin~ities in the derivatives of the velocity co5pone~ts. 
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